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Abstract. An integral solution to the quantum Knizhnik—Zamolodchikov (qKZ) equation with

lg] = 1 is presented. Upon specialization, it leads to a conjectural formula for correlation
functions of theXXZ model in the gapless regime. The validity of this conjecture is verified

in special cases, including the nearest-neighbour correlator with an arbitrary coupling constant
and general correlators in tHeX X and XY limits.

1. Introduction

Consider the one-dimensional spginX X Z chain

o0

H=-1Y (0051 +0)0),1+ Aoio,y). (1.1)

n=—0oo

In this paper we address the problem of describing correlation functions of (1.1) in the
gapless regiméA| < 1. In earlier works [1, 2], the case of the anti-ferromagnetic regime
A < —1 was treated within the framework of the representation theory of the quantum
affine algebral]q(sAlz). As a result, correlation functions have been described by using the
guantum Knizhnik—Zamolodchikov (gKZ) equation. It is with this aspect that we will be
concerned in this paper. Before coming to the main subject of this paper, let us first recall
some known results foA < —1.

Let V = C?, and consider th&-matrix R(8) € End-(V ® V) associated with th& X Z
model (see equation (2.2)). The gqKZ equation is the following system of linear difference
equations for an unknown functio@, (81, . .., B2,) that takes values iy ®2:

G,(B1, ...

B =21, ..o, Bo) = Ry j1(Bi — Bisa — 2w1) "t Rigu(Bj — Pon — 27i) 1

XR1j(Br—Bj) - Ri_1j(Bj—1— B)Gu(B1, ..., B}, ..., B2a) . (1.2)

Here R;;(B) € End:(V®?") signifies the matrix acting a®(8) on the (, j)th tensor
components and as identity elsewhere. The correlation functions of arbitrary local operators
are obtained as the specialization

n n

—_
G,(B+mi,....B+mi,B,....B). (1.3)

To be precise, in the case < —1, there are two functions” (i = 0, 1) associated with
the two anti-ferromagnetic vacuum states, and it is their éyna= F© + F that satisfies
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the gKZ equation (1.2), as well as a set of relations (2.4)—(2.6). The correlators are given
by specializations of") rather thanG, itself. In the context of representation theory, the
functions F" are traces of products of certain intertwiners (vertex operators) taken over
the integrable highest weight modul&gA;). By realizingV (A;) in terms of bosonic free
fields, an explicit integral formula was obtained for the functiéi{8 (i = 0, 1) and hence
for the solutionG,, of the gKZ equation.

The argument relating correlation functions to the functiéndgs based on the extension
of the corner transfer matrix method [2, 3]. It is applicable to the more general case of the
XYZ spin chain as well [4]. Correlation functions are related in the same way as above
with solutionsG, of the gKZ equation, this time having the elliptR>matrix as coefficients.
Unfortunately, the mathematical structure of ti& Z model is not yet fully understood
(see [5, 6] for a formulation of an elliptic extension U)}(ﬁz)). The free-field realization
is still unavailable (see, however, the recent development [7, 8] in this direction). Thus it
remains an important open problem to construct solutions to the gKZ equation in the elliptic
case.

For theX X Z chain in the gapless regima| < 1, the corner transfer matrix fails to be
well defined. Nevertheless, this case can be viewed as a limiting case ¥¥tAechain, so
that the same recipe (1.3) is expected to apply for obtaining correlation functions. (Unlike
the caseA < —1, the vacuum state is unique and the distinction betwe&hand F®
disappears.) The problem is then to find appropriate solutions of the gKZ equation.

Up to an overall scalar, th®-matrix R(B8) of the XX Z chain is a rational function in

(=¢e" g=—€em" (1.4)
where
-1
A = —COStv = 4 +2q (1.5

However, the nature of the solutions is quite different depending on whether—1 or
|A] < 1. In the caseA < —1, we have—1 < ¢ < 0 and the solutions are meromorphic in
¢, typically involving infinite products of the forli[°~,(1 — ¢¢?"). On the other hand, the
case/A| < 1 corresponds ty| = 1. There are no analytic solutions which are single-valued
in ¢. Instead one has to look for solutions which are meromorphic i log

A certain class of solutions to the gKZ equation with = 1 has been studied in detail
by Smirnov [9] in connection with the form factors in the sine—Gordon theory. The equation
relevant to the correlation functions of theX Z model is slightly different from Smirnov’s,
in particular the shift-2ri in (1.2) is replaced bw2ri in his case (the former has ‘level
—4’ while the latter has ‘level 0’; we will also consider the case in which the sh#ftri
is replaced by—iix wherex > 0 is a parameter.) In this paper we give a solution to the
former, in the form of an integral which has a similar structure to the e¢ase —1, and
conjecture that its specialization (1.3) gives the correlation functions oXtki& model
with |A] < 1. Our integral formula is essentially the same as the one written down earlier
by Lukyanov [10]. However, in Lukyanov’s case, it is given as a generating function of
the form factors of local operators in the sine—Gordon theory. Our point here is to interpret
it as a formula for the correlation functioms the lattice In general, difference equations
determine the solutions only up to arbitrary periodic functions. We need to ensure that the
particular solution we present actually corresponds to correlation functions. As supporting
evidence, we verify this statement in three special cases for which exact results are available:
(i) the nearest-neighbour correlati¢®o3), (i) the XXX model A = —1 and (jii) theXY
model A = 0. The integral formula and these verifications are the main results of this
paper.
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The text is organized as follows. In section 2 we formulate the gKZ and related
equations. We then write down an integral formula for solutions. In section 3 we specialize
the formula in section 2 and propose that it gives correlation functions. In the special case
v = 0, we recover the formula for the correlation functions of #i& X model derived
earlier in [2,11, 12]. In section 4 we process our integral formula to reproduce the simplest
correlation functionofo3). This quantity can be derived by differentiating the ground-state
energy of the Hamiltonian. In section 5 we consider HE limit (v = %), which can be
studied independently by using free fermions. The correlation functions are given by the
determinants of certain matrices whose entries are elementary functigns @ur integral
formula in this case is shown to be equivalent to the free-fermion result. Section 6 is
devoted to a discussion concerning some previous works [9, 10, 12] on the gKZ equation
with |¢| = 1.

Since most of the statements are proved by purely computational means, we have put
technical points in the appendices in order to make the paper easier to read. In appendix A,
a summary of Barnes’ multiple gamma functions is offered. Appendix B contains the proof
of the difference equations of section 2. In appendix C it is shown how-floéd integral is
reduced to arin — 1)-fold one by explicitly carrying out the integration once. Appendix D
is the derivation of the expression fario}). Appendix E is the evaluation of an integral

in the casev = % Finally, appendix F is devoted to the free-fermion theory in e
limit.

2. Integral formula

2.1. The difference equations

In this section, we formulate the system of equations we are going to study, including the
gKZ equation with|g| = 1. We then give a particular solution in the form of an integral.
Throughout this section we fix parameterandi (see equation (1.4)) such thatOv < 1

andA > 0. For the convergence of the integral, we assume that

vt D> om. 2.1)
vV

In the application to thed X Z model, we will choose. = 2r.
Consider theR-matrix R(8) € End:(V ® V) acting on the tensor product of =
Cvt @ Cv:
RB0T® v = Y REZ (B @ v

£1,€2

1 (2.2)
R(B)= —R(p).
(B) <(B) (B)
The parametep enters the matrix elements as follows:
RITB=R-(B =1
RI-(B)=RT(B)=b
+—(B)=R_L(B)=b(PB) 2.3)

RYL(B) = RT(B) =¢(B)

R1:2(B) =0 in the other cases

where
sinhvp sinhvri

YO = Givai—p P sovai— )
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The functionk (8) will be specified below. It is chosen to ensure that frenatrix satisfies
the unitarity and the crossing symmetry relations
—£18)

Ri(B)Roa(—p) =id  RZ(B) = Ro.: (i — B).

Let n be a non-negative integer.  Consider W&®?'-valued function G, =
G,(B1, .., B2u), depending on the ‘spectral parametess, . . ., f2,. We set

Go=1.

We study the following system of difference equations @4y involving the parametex:

A
Gu(eo s Bivts Bis -+ ) tjarey. = Z R (B — Bi+D)Gul oo By Bt - )l

€571
(2.4)
Gn(ﬂl’ M) ﬂ2n—1» ﬂzn - i)\')gl,m,sz,, = Gn (ﬂ2n7 ﬂla M) ﬂZn—l)sz,,,gl,m.sz,,,l (2'5)
Gn (ﬁls ceey ﬂzn)é‘l,...,azn |}32n:f32n—1+77i = 882”71+82,l,0anl(ﬂls ML) ,32n—2)sl,...,eg,l,2 . (26)

In particular, the gKZ equation (1.2) is a consequence of (2.4) and (2.5). It can be shown
also that (2.4) and (2.6) imply

Gn (ﬂl5 IREE] ﬂZn)sl ..... & |/3,-+1=/3,'+7Ti

= 5£/+8/+1,0Gn—1(ﬁ1a ey ,Bj—l» ﬂj+2a e ﬂZn)el,...,2/-,1,8/+2,...,62, (27)

forany j = 1,...,2n — 1. Note that equations (2.4)—(2.6) involve only the functions
Gn(B1, ..., Bon)ey....er, With fixed value of the ‘spin’s; 4 - - - 4+ €2,. Throughout this paper
we will restrict ourselves to the ‘spin-0’ case, i.e. we assume

Gll(ﬁls""ﬂzn)&‘l ..... &2n =0 unlessel+"'+82n:O~

2.2. Auxiliary functions

Our aim in this section is to construct a solution to (2.4)—(2.6) by using-foid integral.
The formula involves certain special functiorgg), po(8), ¢(B), ¥ (B). Let us first give
their definitions and list some of their properties. In what folloWs(x|w;, ..., ®,) will
denote the multiple sine function (see appendix A for the definition).

o «(B)
_ S2(iBl2m, 7w /v)Sa(m —iB|2m, 7/v)
“B) = = iz, /) Sy + B2 7 )v)
_ exp{—i /00 gsin(Zﬁu/n)tsinh(l — V)t }
0

t sinht coshvt

k(Bk(=p) =1
L sinhvpg _
k(B (B —ml) = m =b(B).

e p(B)
. S —iB)s A
p(p) = sinn "2 20 BT (5w = Satelzm, 2, /)

_ p(ig) exp{/w dr sir? (B — iA/2)vt /) sinh(1 — v)t}
0

t coshvr sinhr sinhave /z
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p(B)
= 2.8
2 (—B) k(B) (2.8)
p(r—B) = p(ﬂ) (2.9)
p(B) = .Up.(m) (B + i)+ --- wheng — —xi. (2.10)
isinTv
e ¢(B)
B) = 2
P = S /2 1 iBIn 7 /v) Sa(w/2 — 1Bl 7 /v)
B % dr sir? Bvt /7 sinL+ (A — 7)v/7)t
=¢© exp{—Z/O T sinhivt /7 sinhz
o=p) =0 _
o(B —1A) _ sinhv(B —.m/2)' 2.11)
o(B) sinhv(B + wi/2 —ix)
p(B£xi/v) _ sinh(x/a)(B £ 7i/2)
¢(B)  sinh(/a(BFi/2+ )
_ A/ () .
p(B) = iiSZ(nM, 2 /) (B :Fni/Z)_Jr e wheng — +xi/2 (2.12)
o Y(B)
Y (B) = sinhzB/A So(wr +iB|A, w/v)So(r — BN, T /V)
Y (=B)=—-v(B) (2.14)
(B + /(B —mi/2Y(B) = sinhvp (2.15)
Yv(B+Ir) _ smhv(ﬂ +ix —.m) . 2.16)
v (B) sinhv(B8 + mi)
In addition we will use a constani, given by
¢, = (—16)"-D/2 (”SZ(”M’ .”/”)2>n , (2.17)
Ap ()
In the case. = 2 the formulae simplify to
_ n(n—1)/2
pp =sinhg o= 0T
p(m”
2.3. Integral formula
Let us present the integral formula fa¥,(B4, ..., Bon)er..er,- Given a set of indices
€1y nns g2, € {+,—}, we define a mam € {1,..., ny - ae{l,..., 2n} in such a

way thate; = + anda < b if a < b. Define further a meromorphic function

]—[j<a sinhv(a, — B; + i/2) ]_[j>(j sinhv(B; — a, + 7i/2)
[1.-,sinhv(e, — ap — i)

Qn (a|13)81...€2,, =
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wherea = (a1, ...,a,) andg = (B, ..., Ba). After these preparations, we set
GuBrs -+ Bondereo = Cu | [ P(B) — Br)
j<k
do,
<1 /C o 1_J[ oo = ) [T e — @) QrfelBcn (2.18)

Clearly we have, for any,

Gn(lgl+yf’/32n+y):Gn(ﬂ171132n)

In appendix B, we will prove that with the appropriate choice of the integration contours
C, (1 < a < n) as given below, the functiorG,(fs, ..., B2,) IS meromorphic and
satisfies (2.4)—(2.6).

In order to specify the integration contours, let us examine the poles of the integrand
of (2.18). The poles op(«, — B;) are at

o, — B = £i(nad + no/vmw +1/2) (n1,n, > 0). (2.19)
The poles ofy (o, — ) (a < b) are at

a, —ap = £i(md + (np — v)m/v) (ni,no > 1) (2.20)
and the poles of Asinhv(a, — «;, — i) are at

Ay — oy = n+v7ti nez). (2.21)

Sincevy (o, — «y,) has zeros at
g —op = ti(nih + nomw/v + ) (n1,no > 0) (2.22)

the poles ofy (o, — )/ Sinhv(e, — o, — i) are at

270 (me>1) (2.23)

oy —ap = i(nh +

or

"2y = 0np=1). (2.24)

oy —ap = —i(nih +
Therefore, the poles in the variahilg of the integrand are contained in the set
(B £+ x4 7)) A< <2mnng>0)
V

np —v

ap +i(nh + ) (a<b<n;ny,ny>1
ab—i(nlk+n2_vn) (a<b<nyn>20n,>1
ab+i(nlk+n2_vn) 1<b<a;n>20n,>21
w—inri+ 2" r)y  A<b<an,ng>1).
We choose the contow?, for «, by the following rule:
«, lies on the real line fofa,| > 0 (2.25)
B+% (U<j<2)  a+i0+5n) (@<b<n)
w+ittr 1<b<a) are aboveC, (2.26)
Bi—4 (A< j<2n) a— it (a<b<n)

a— i+ 1) (1<b<a) are belowC, . (2.27)
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Note that we can choos€, to be the same contouf for all ¢ such thatg; + xi/2
(1< j < 2n)are aboveC andg; —mi/2 (1< j < 2n) are belowC.

Let us check the convergence of the integral. Recall that the periods of the double sine
function S, used ing and are such thatvy = A > 0 andw; = 7/v > 7. In the proof
below, we use ‘constant’ to mean different constants which appear in the estimates. From
(A.14), we have

(T —w1—wp) |t |

lp(a, — Bj)| < constantx e @12

Y (oa — ap)

sinhv(a, — ap, — i)

271’(0)2—7‘[)

< constantx e ez (%l +lesD

etal

| sinhv (e, — B; = mi/2)| < constantx ew
Collecting these estimates we see that

72T —w1=wp) |
< constantx e @@ a %

[Teta— B[] ¥ (@ — ) Qu(@|B)s,..co,
a,j

a<b

Since we have assumed that 2 w1 —wy = 2 — A — /v < 0O, the integral is convergent.

2.4. One-time integration

In the case of interest = 2, then-fold integral forG,, (81, ..., B2:) can be reduced to an
(n — 1)-fold integral by carrying out the integration once. The result is stated as follows.

Gu(Bro - Baderer, = || 2B — BO)

1< <k<2n

7_[ 1 n _
X— <75 (=1t / . / doyD(ag, ..., -1, @1, .o v, Q)
v eZﬁ//zze /3/ ; g

2n
x H[l_[ ACTE) 1_[ sinhv (o — B +7i/2) l_[ Sinhv(—ak+13j+ni/2)j|
kAl Gi=1 ik i
i 1pg. 1 B . 7 1
% Smhv(Zk#l a+ 36— 3 £l Bi +mi(l =21+ 2))
Hr<s.r,x7&l Sinhv(ar — Oy — 7T|) :

(2.28)

Here we have set
&, = 23”(”_1)/2(—7rip(71i))_n
and

D(x1,...,x,_1) = det(e_(n_Zk_l)xj)1<jyk<n_1.

As before, the numbers < - -- < i1 are determined by
T11<i<n}={j11<j<2n,6=+).

The integration is taken along a path going froapo to +oo in such a way that
—/2 < Im(x — Bj) < m/2 for all k, j. In the above, we assume that v < %

for the convergence of the integral. It should also be possible to treat the% case< 1
by introducing a suitable regularization as in [9], but we do not go into this question here.
The derivation of (2.28) will be given in appendix C.
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3. Correlation functions

We now proceed to the description of correlation functions ofX%Z model. From now
on, we assume that = 2x.

First let us set up the notation. L&t denote the 2 2 matrix with 1 at the(e, ¢')th
place and 0 elsewhere. Thus the Pauli spin operators read

x:E+7+E7+ y:_iE+ +|E+ O'Z_E++_E77.
In the tensor product-® V; ® ;41 ®- - - of V; ~ C2, we leta?, E/) denote, respectively,

the operators acting as* or E.. on the jth component and as |dent|ty elsewhere.
By a local operator we mean an element of the algebra generatet}’ by Any

local operator is a linear combination of operators of the fane= E;) ES™Y .- E()

r+1°7 svs
(r < s5). The correlation function oD is its expected value with respect to the ground-
state eigenvector of th& X Z Hamiltonian. We conjecture that it is given by the following

special value ofG, (n =s —r + 1):

(ES o ES ) E G Bt Bl B B (BD)
We shall consider a slightly more general object
G (IBr + 7Ti IBs + 7Ti IBSs .. ﬂr)fs’,...,78’,sx,...,ar . (3 2)
This corresponds to mtroducmg spectral parameferas inhomogeneity of the model (in
the terminology of [13], the corresponding model &-invariant’). We shall denote (3.2)
by
(E;r;}. EQ VB B (3.3)
To see the specialization (3.2) is well defined, we note the following. In the general
formula (2.18) the contouC for integration is such thag; + i(2rn1 + wna/v + 7/2)
(n1, np > 0) (respectivelyg; —i(2rni+wno/v +m/2) (n1, n2 > 0)) is above (respectively
below) C. When g; = B + xi, the contourC is pinched byg; — xi/2 and g, + mi/2.
However,Q,(«|B) has a zero at, = 8; —xi/2 fora > j, and also atr, = g + 7i/2 for
a < k. Therefore, ifj < k, there is no pinching by poles of the total integrand.
In order for (3.1) to make sense as a correlator, we must check the following property:
Proposition 3.1.
(Ef) - Eg D (ESL+ED)(Broon, Booas B) = (E) - ES L )(Brvns Bid)
(3.4)
(EL A+ EQESY ES B Bt B = (ES™Y - ES ) (B ).

S,_+18y+1
(3.5)
Proof. Let us takep; = ;1 + mi in (2.4). Since
0
. 11
R(ri) = 1 1
we find from (2.7) that

Gn—l(ﬂla ceey ﬂj—l’ ﬂj+27 ceey ,32n)51,...,aj,1,ej+2 ..... o

= Z Gn(ﬂ17 ey :B]’ /3/+1, ey ﬂ2n)$1,...,8,—8 ..... &2 ﬂ/:ﬂ/+1+ﬂi .
&€
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Equation (3.4) is a direct consequence of this. The above equation together with (2.5)
implies (sincer = 2x) that
Gu1(B2, -+ Bon-Vesenis = Y Gn(Br s B —ecceanins el gy _pmi -
&

From this follows (3.5). O

We now write down the integral formula for (3.2). Set= s —r+1, and defind, ..., 7
r<l<---<n<s+n=r+2n—1) by the following rule:

L....a)={lr<j<s &=—)U{j*|r<j<s g=+}
where j* = 25 + 1 — j. We have then the following expression for (3.2).
(Eg) - ESL)Brs - B)

_ 1—[ sinh(B; — Bi) / f dOll sinh(a; — ay)
sinhv(8; — Br) 1 2m l<l<l’<n sinhv(oy — ay — 7i)

r<j<k<s
inh s
X 1—[ I:l_[ sinh(c; — ,3;+10) BRI_SIH v(e; — B;)
. . S —i

X l—[ sinhv(—a; + B; + JTI):| l_[ [l_[ Sinfer — § —i0)

I<j<s s+HILKI<s+n =J=T k
X l_[ sinhv(—o; + B;) l—[ sinhv(oy — ﬂ,+nl)} (3.6)

r<]<l* I* <j<s

Here the symboly, — 8; 410 (respectivelyo; — g; — i0) indicates that the contour far;
runs above (respectively belowg).

Let us put the formula in a form closer to the known result foe 0, takingr = 1,
s = n. We choose the integration contodr, for «, (1 < a < n) and C_ for «,
(n+ 1< a < 2n)in such a way thap; + i (respectivelys;) (1 < j < n) are above
(respectively belowY; andg; (respectivelyg; — zi) (1< j < n) are above (respectively
below) C_. (Here the contours are directed frompo to oo, as opposed to th€= in
pp 122-3 of [2].)

SetA’={j|¢; =—}andA = {j | &; = +}. We suppose that(A’) + fi(A) = n since
otherwise(Es(ii . E(”) Y(B1, ..., Bn) = 0. We define a mapping

£,En
ae{l,....,ny=A,UA_—>aei{l,... n} (3.7)
by the condition that (|Xa lae Ay} =A'{a|lae A_ } = A; (i) if a,be Ay anda < b
thena < b; (iii) if a, b € A_ anda < b thena > b. In other words, the-'s in the sequence
—€), ., —Ey En, ..., 8 ANC—EL, ..., —€L, €,...,61 Wheres = §(A_) = n —s’. Then

n'

we have
Gn(,B1+7Ti/2,...,,3n +7Ti/2’,3n —7Ti/2,...,,31—7'[i/2),5'1 ..... —&! Enyer€1
= (—1)Zaca, @+ Taen_ EHHA ) tn(n=1)/2 l—[ sinh(ﬂj — B
1<j<k<n SINNV(B; — Br)
do,
x l_[ / 2msmhv(ozu Ba) al;li /C_ 2risinhv(a, — B3)

acA,

[ SMe—a) o sithve—p)

1<a<ben sinhv (o, — oy, — i) 1<a.j<n sinh(e, — B;)
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1—[ Sinhv(ﬂj — g + i) l—[ Sinhv(aa — B +mi) . (3.8)
wry SINV(B; —ag) b sinhv(a, — B))
In the limit v = 0 we recover the integral formula for th& XX correlation

functions ([2, 11, 12]).

4. Nearest-neighbour correlator

In this section we examine the simplest cases of the general formula for the correlators
proposed in the previous section.

First consider the cas€1(81, 82). Takingn = 1 in formula (2.28), we immediately
find the following.

Proposition 4.1.

1 p(B1— Bp) sinh3v(BL — 2 — i)

G1(B1, B2)—+ = G1(B1, B2)+— = 2 prh) Sinh%(ﬁl i)

In particular, by setting3; = 8, + xi, we have
(ES) =(ED)=1. (4.1)
Next let us take: = 2 in (2.28).
Proposition 4.2.Assuming O< v < % we have

]—Ij<k P(,B/' — By e Z?:lﬁ/ﬂ
GoBr, ., P)ys = ) -
Z(ﬂl ﬁ4)++ p(O)Zp(Tu)‘l 27_[‘)2 Z;].:l eﬁﬂ/

4
X / Oo € nw(a - Bj) Sinhv(—a + B3+ ni/Z) Sinhv(—oz + Ba+ ni/2)

j=1
x[sinhv(—a + B + 7i/2) sinhv( + (B2 = b1 — s — f0)/2 — 3ri/2)

—sinhv(e — 1 + 7i/2) sinhv(a + (BL — B2 — B3 — Ba)/2 — rri/Z)] . (4.2)

The integral is taken along a path froApo to +oo such that-/2 < Im(a — 8;) < /2
for all ;.

Here we have used the relatigr(0)p (i) = —1/(4./v) which follows from (2.12),
(2.13) andS, (|27, /v) = /2.

Upon specializationip, . .., B4) = (B+xi, B+i, B, B), this integral can be processed
further. After a chain of steps detailed in appendix D, we obtain the following result.

Proposition 4.3.We have
(EYE®) = Go(B + i, B+ i, B, B) s

t d <sin7rv foo sinhd — vz dt) L1 (4.3)
0

" z2sinmv dv sinhz coshvr 2

We note that, since both sides are holomorphic with respeat for 0 < Rev < 1,
equation (4.3) is valid without the restriction<Qv < %

We now compare formulae (4.1) and (4.3) with known answers. For this purpose let us
quote from [3] the results concerning theX Z model which are relevant to the following

discussion.
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The XX Z model for a periodic chain of circumferenée is given by the Hamiltonian

N
N Ly -
H=-3 (ij ij-s-l + Uj} Uj»+1 + Aaqu/‘zﬂ) : (4.4)
j=1

This Hamiltonian (4.4) is associated with the six-vertex model with the Boltzmann weights
([3], equations (8.8) and (8.9))

a=sin? =" b:sin'lH_w c=sinu. (4.5)
2 2
Denoting byT (w) the transfer matrix of the periodic system with columns, we have
d 1 N
—logT =— H + — cos 4.6
dw g (w)‘w:_# 2sinu ( + 2 M) (4.6)
whereA is related tou via
A = —Ccosu . 4.7)

The gapless regimpA| < 1 corresponds te being real.

For a local operatoO, let (vagO|vag denote its ground-state average (in the limit
N — o0). Since in the gapless regime the vacuprac is invariant under ther < —
symmetry, one must have

(vadoi|lvag = (vad(E{. — EY)vag = 0.
Along with 1 = (vad (Eﬂ_lﬁ)L + E(_ll)|vac), this means
(vadE'Y, lvag = (vadE™ [vag = 1. (4.8)

Our formula (4.1) is consistent with this.
In the limit N — oo, the free energy per sitg is given by ([3], equation (8.8.17))

f /O" sinh(ie + w)x sinh(m — p)x
——— =loga + .
kT oo 2x sinhzrx coshux

dx . (4.9)

It follows from the relation (4.6) that the ground-state energy peregitef the X X Z chain
is

. d
eo=—;COSM—ZSIn,u< f) (4.10)

aw \ kT

w=—u

Differentiatingeo with respect toA, we can obtain the nearest-neighbour correlator for
the o* operators:
deo 2 deo
vadojoslvag = 2~ = ——— ——.
(vagoioz|vag dA sinu du
Inserting (4.9) into (4.10), we find the following expression for this quantity:

sinh(m — u)x dx) '

—_— 411
sinhmrx coshux ( )

(vado;ojlvag =1+ 4 d sin /oo
7192 - sinu du H 0

On the other hand, in view of (4.8) we have
(vadoioi|vad = (vad(l— 2EY )1 — 2E?)|vag = 4(vadE® E® jvag — 1.

Therefore, formula (4.3) agrees with (4.11) with the identificatios: 7 v.
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5. The XY limit

In this section we study the integral formula for the correlation functions (3.6) at a special
value of the parameter = % This is the case where theX Z chain reduces to th&Y
chainA = 0. Itis well known that theXY chain is equivalent to the two-dimensional Ising
model. To be more precise, theXZ model with A = 0 corresponds to the critical Ising
model. In this case, diagonalizing the transfer matrix in terms of free fermions, one can
calculate the correlation functions directly in the presence of arbitrary spectral parameters.
The diagonalization is worked out in appendix F. Here we show that the formulae thus
obtained give the same result as the integral formula (3.6).

We shall consider the function

(B ESD - ESL) By Brot ooy By)

given by (3.3). In order to simplify the presentation, we shall takepgl to be real
throughout this section. (This is a matter of convenience and not actually a restriction. The
final formulae are valid as meromorphic functionsfiis.)

A special feature about = 3 is that (3.6) becomes a determinant.

Proposition 5.1.If v = %, we have

(Eg) - ESL B By =[] 2icoshi(B; — Bi) x detyz)ick (5.1)
r<j<k<s

Heren =s —r + 1, the I, are given forr <1 < s by

s

do ! 1 1
I, = 2i2rfs+lfl / bt e(kf(n+1)/2)ut 5.2
. 2n ]U 2 coshl (@ — B)) D 2sinhi(a — B; +i0) ©-2)

andfors+1<I<s+n
Iy = Iy

with the bar denoting the complex conjugate. In (5.2), the integration contour is a line
above the real axis, as indicated by the symbdD.

Proof. Specializing the formula (3.6) to = % we find

B — Bx = Aoy Ce 1
H 2coshT //111271 Hlemhé(m—ap)
I

r<j<k<s 1<l

7 1 g 1
2in+sfl :|
* [ Jl:,[ 2coshj (o — ) H 2sinh3(o; — B; +10)

r<i<s j=I

* K
7 1 1
X 2i~ 1+ . . :| .
HK-@H[ jl:,[ 2 cosh} (o — ) jlz_;[ 2sinh}(o; — B; —i0)

Inserting

l—[ 2isinhi (o — o) = i7" "V/2 e "5 @kt det @)1 pey

<l
we obtain the right-hand side of (5.1). O

In appendix E we evaluate the integral (5.2) explicitly (see equation (E.2)).
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We now proceed to the calculation of correlation functions of the fermion operators
* z z + _ z . -
wm =0, 20,19, 1//'” - Um—ZUrfzt—lam .

We shall consider only monomials consisting of @rennumber of such operators. They
are local operators in the sense of section 3. For instance,

O Opgd 0107 (m <1)
Ipm W[* = E(_m_) (m = l)
otof - 0) 40, (m=>1).

Clearly the function(O) for a monomialO is 0 (see equation (3.3)) unless it consists of
the same number af’'s andy*’s.
The following two propositions will be proved in appendix E.

Proposition 5.2.

(wml e kaw[: e W;) = det((lhm,vw:))lgj,igk . (53)
Proposition 5.3.
Wm¥) = (D" (W)
jlml L TTishea(B; + B)
- _ B, B 1/2 A Li=m1V7y T 1 5.4
—— (BuB) ;ﬂ e (8~ 8 (m <D (54)
=1 (m=1). (5.5)

Formulae (5.4) and (5.5) give the same results for the corresponding quantities (F.16)
(vady,,¥'Ivag obtained directly by diagonalizing the Hamiltonian (see appendix F). In
general, the multiple correlators of the fermions are given by applying Wick’s theorem.
Since (vady,,y;|vac = (vady¢;*|lvag = 0, the result is given as a determinant in the
same way as (5.3). Any local operator (i.e. a finite linear combination of monomials in
o’s) can also be written as a linear combination of monomials of the fermions. Therefore,
we can state

Proposition 5.4.For an arbitrary local operatap, (O) = (vadO|vac holds.

6. Discussions

Before concluding the paper, let us touch upon previous works on the qKZ equation with
gl = 1. In [14] Smirnov introduced and solved a system of difference equations for the

form factors of local operators in the sine—-Gordon theory. His equations are the same
as (2.4) and (2.5) in this paper except tlfat= —R is used (see p 29 in [14]) and that

A = —2r instead ofr > O (the case relevant to the correlation functiork is: 2rr). There

is a significant difference between (2.6) in this paper and equation (16) (p 11) in Smirnov’s.
The latter requires that the solution has a simple pole at the pgint 82, 1 + mi, while

the former requires that the solution is regular there. The physical origin of this difference

is that in Smirnov’s case the poles are the annihilation poles of the form factors while in

our case (2.6) is the normalization of the correlation functions (see proposition 3.1).

There are other mathematical differences between Smirnov’s formula and ours. The
number of integrations is-fold in our formula in contrast to thé: — 1)-fold integrals in
Smirnov’s. Since the integration can be carried out once (see (2.28)), this difference is
rather superficial. The significant difference is that in Smirnov’s formula(the 1)-fold
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integral reduces to the determinant of @n— 1) x (» — 1) matrix with entries given by
integrals with respect to a single variable. This is not the case in our formula (except for
v = $—the case of theXY model). This lack of determinantal structure is already noted
by Nakayashiki [12], where the special case- 0 was studied.

In a recent paper [15], Smirnov has constructed an affluent family of solutions that
corresponds to a family of local operators in the sine—Gordon theory. In our case, the
structure of the total space of solutions is absolutely unknown. In this connection, let
us mention an open problem: to show that our integrals satisfifs, . .., Ban)e,...e, =
Gn(B1, ..., Bon)—er....—s,- Adirect verification seems difficult, and we suspect that it should
follow from the unigueness of the solution satisfying certain analyticity and asymptotics.

In fact, the form factors and the correlation functions are closely related. As was
discussed in [2,16], in the regim& < —1, the former are represented by the type-Ii
vertex operators and the latter by the type-l vertex operators. The type-l vertex operators
generate a family of solutions to the form factor equations, and vice versa. In the sine—
Gordon theory, this viewpoint was explored by Lukyanov [10]. Lukyanov has introduced the
appropriate commutation relations for the vertex operators, and has given a bosonization of
the sine—Gordon theory with a cut-off parameter. Though we have not checked the details,
it seems likely that the integral formula f@F, in this paper is derivable from Lukyanov’s
bosonization after taking the cut-off parameter to infinity. R

In the approach of this paper, the role of the quantum affine aldéfisd,) is unclear. In
the A < —1 regime, the free energy, the excitation spectrum and the correlation functions
depend on the spectral parametgisthrough¢; = e*#. In the gapless regime, these
guantities are single-valued only i) and the period 2i/v is lost. What is the implication
of this fact in the representation theory? This is an interesting question to be asked.

Acknowledgments

We thank Sergei Lukyanov, Atsushi Nakayashiki and Feodor Smirnov for valuable
discussions. We wish to express our sorrow at the death of Claude Itzykson. We have
always liked his nice lectures given in his fascinating voice ever since we first met him in
San Francisco in 1979.

Appendix A. Multiple gamma functions

The multiple gamma and sine functions were introduced by Barnes [17, 18], Shintani [19]
and Kurokawa [20]. Here we follow the notation of [20]. In what follows we fixratuple
of complex numbers = (w1, ..., ®,). For simplicity we shall assume that Re> 0. We
setn - w=mwy+ - +mo, (1= 01,....1n), |0 =1+ + 0.
The multiple gamma and associated functions are defined as follows.
Multiple Hurwitz zeta function

Gisxlo)= Y (rot+x. (A1)
ni,...,n, =0
Multiple gamma function
a
T, (x|o) = exp(¢/ (0, x|w)) (’ = as> . (A.2)

Multiple digamma function

Ur(xlw) = % logT, (x|w) . (A-3)
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Multiple sine function
S, (@) = T (x0) 7T, (Jo] — x]w) V" (A4)
Multiple Bernoulli polynomials
e’

Whenr = 1, they are related to the ordinary gamma and other functions via

o th
=2 Batlo). (A.5)
n=0 """

£1(s. x|wy) = w1‘§<s, x)
w1

x/or—iT(x/w
Fi(xlw) = zi/LZl'O

1 X
Va(x|wy) = wl(w (a)1> + Iogwl)

S1(x|wy) = 2sin<”) .

w1

Here we list the basic properties of these functions.

Difference equationsSetw(i) = (wq, ..., w;_1, W11, ..., ®).
& (s, x + oj|lw) — & (s, x|w) = §—a(s, x|w(i)) (A.6)
I +oilw) 1 . A7)
I (x|w) Iroa(x (i)
i 1
Sr(x +wilw) _ . (A8)
Sr(x|w) Sr—1(x|w(i))
Br,n(x + w; |Q) - Br,n(x|9) = nBr—l,n—l(x|Q(i)) . (Ag)
Analyticity. As a function ofs, ¢, (s, x|w) is continued meromorphically on the whole
complex plane and is holomorphic except for simple poles-atl, ..., r. We have
_ D ey
&r(n, x|w) = 1) v (x|w) (n>r)
n!
— =(-1)"———8B >
& (=n, x|w) = (=1) RSy rnr (X]@) (n=>0)
. — Br rfn(-x|a))
_ — (== > > .
fim (s =mg (s xl0) = (D" L= r2nz D)

I, (x|w)~t is an entire function of. T',(x|w) is meromorphic with poles at = n - w
(n1,...,n, <0).

S, (x|w) is entire inx whenr is odd, and is meromorphic whenis even. Its zeros and
poles are given by

r odd zerosak =n-w (ng,....,n,=>1ornyq,...,n. <0
r even zerosat =n-w (ny,...,n- <0
poles atx =n-w ny,...,n =1).

All zeros and poles are simpleiif- w's do not overlap.
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Integral representationslf Rex > 0 then

&(s,xlw) =-T (-5 e [T (1 — e 27i

(_ )r e*'log(—1) dt
logT, (x|@) =y —— By (x|w) + T e o
Y (x|lw) =y (_ )r B, (x|w) — e *log(—t) dt

c [T 1 —e-1) 2mi
wherey = Euler’s constant andi‘(x) denotes the ordinary gamma function. The contour
C is shown in figure Al.

c
(—
Figure Al. The contourC.
Asymptotic expansiorAssumews, ..., w, > 0. Then for anyN > 1 we have
k

r—1 rr k(O)Z 1

logT, (z|w) = (~1) Z o H (ogz +y - ;7 +v6(0,2)
+ Z( e h B, a0z " +0(z ™) (A.10)

)I
asz — oo in the angular domannArg(z —x)| <7 —¢,wherex >0and O< e < 7.
The caser = 2 is of special interest to us. In this case the following formulae hold.

sinh(x — (w1 + w2)/2) ¢ dr
- = R
10g S2(x|w) /C 2 sinhwst /2 sinhwyt /2 og( t)Zrcit (O <Rex <1+ wp)
S tonle) _ 1 AL
So(x|w) 2sinwx/w;
So(x|@) Sa(—x|w) = —4sin"> sinmx /ws (A.12)
w1
S0 = 2 x+06D) (x> 0) (A.13)
= — .
2(x|w o x x X

S = |2 s Plo)=v2 s

In addition, asx — oo (£Imx > 0), we have

x? w1+ wp 1 (o
— X —
2(1)1(1)2 20)1(1)2 12

(2a — wz)
log S2(a + x|w)S2(a — x|w) = :l:rrl—x +0(1).
w12

)1

+ — +3)) +0o(1)

w1

log Sa(x|w) = £mi (
(A.14)

Appendix B. Proof of difference equations forG,,

Here we prove that the integral formula (2.18) possesses the required properties (2.4)—(2.6).
Proof of (2.4). Let G, = G,/pn, pn = ]_[j<k p(B; — Pr). Because of (2.8), (2.4) reduces
to the same equation fag, whereinR is replaced byR.
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There are four cases to considés;, ;1) = (—, —), (+, —), (—, +) and (4, +).

o Case(ej, gj+1) = (—, —). We are to show that

Gl Bt Bis oo Ve = Gy By Bigds « o ) - (B.1)
This is obvious because the integrand@®f is symmetric with respect tB; and Bj41
If (€_f7 Sj-‘rl) = (_7 _)

o Case(ej, &j+1) = (=, +). Suppose thai = j + 1, and setx = «,. Comparing the
integrands ofG, (..., Bj+1, Bj, .- )eg—.. ANA G, (..., B}, Bj+1, .. ).y, WE Se€ that
the desired equality follows from
b(B; — Bj+1) sinhv(a — B; + 7i/2) + ¢(B; — Bj+1) SiNhv(Bj11 — & + 7i/2)

= sinhv(B; —a +7i/2).

Case(e;, €j4+1) = (+, —). This is similar to the cas¢;, ¢j+1) = (—, +).
Case(e;, €j4+1) = (+, +). We are to show that

Gn(. ey ﬁj+1, ﬂ]’ .. )++ == (_;n(. .oy ﬁ]’ ﬁj+1, .. )++ . (BZ)
Suppose thai = j, and setw = o, ando’ = «,,1. Apart from the factors that are
symmetric with respect t@; andg;;1 and antisymmetric with respect toande’, the
integrand of the LHS of (B.2) contains

sinhv(a’ — Bj11 + wi/2) sinhv(B; — o + 7i/2)

sinhv(a — o/ — i) '

Antisymmetrizing it with respect to the variablesand«’, we obtain an expression that
is symmetric with respect tg; and g;.1. Therefore, we have (B.2).

(B.3)

Proof of (2.5).Because of (2.9), the equality (2.5) is equivalent to

Gn (,BL e /321171» ,8211 - i)\’)al"'EQ,, = (_;n (/3211» ﬂls e /327171)52,151-“82,,,1 . (B4)

If e, = —, thenn # 2n. In this case, the integrands of the LHS and the RHS coincide
because of (2.11):

@ (0g — B2, +ir) sinhv(Bo, — o, + wi/2—iA) = @(ag — B2,) Sinhv (o, — Bo, +7i/2) .
(B.5)
If &2, =+, thenn = 2n. We make the following change of integration variables:
o, — a, — i in the LHS
a1 —> oy

Oy — 071 (BG)

oy — Oy1 in the RHS.
Then the integrands become the same by virtue of (2.11),
(o, —ir — Bj) sinhv(e, —iA — B; + 7i/2) = p(ay — Bj) SiNhv(B; —a, +7i/2)  (B.7)
and (2.14), (2.16),
IP(Ola — 0y +|)") _ w(an _aa)
sinhv(a, —a, +ir — i) sinhv(a, —a, — i)

We must also check that the contours for the LHS and the RHS are the same. Consider

the contourC, corresponding tax, except for the case whesy, = + anda = n. (We

(B.8)
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useC, and C, to distinguish the contours before and after the change of variables.) The
conditions (2.25)—(2.27) foy # 2n are unchanged for eithep, = + or e, = —, and for
both LHS and RHS. As for the casg, = — andj = 2x, the condition is that, in the LHS,

Bon —ik:l:i(nl)\—i—ngfr/v—i—r[/Z) (n1,np > 0) (Bg)
are above (belowy,; in the RHS,
Bon L i(n1h +nomw/v +1/2) (n1,n2 > 0) (B.10)

are above (below(,. They are not the same, but not contradictory, i.e. no points are
required to be on opposite sides of a contour at the same time. Because we know that the
integrands are the same, it means that points that appear only in either (B.9) or (B.10) are
actually not poles. Therefore, the difference between (B.9) and (B.10) makes no difference
in the integrals. As for the casg, = + and j = 2n, the conditions (2.26) and (2.27) are
unchanged foty, (a # n).

If e5, = +, the contour fory, is such that forj # 2n, in the LHS

Bi +irE£i(mid +nom/v+7/2) (n1,n2 2 0)
are above (below) the contour fay,; in the RHS
Bi £i(mA +nomw/v+m/2) (ng,n2 > 0)

are above (below) the contour fof,. These two conditions are not contradictory in the
same sense as above. Foe 2n, the conditions (2.26) and (2.27) are unchanged.

If £5, = +, the mutual position of, and«, changes from the original one because of
the change of variables. However, the resulting positions,adind«,, in the LHS and the
RHS are identical. Therefore, the integrals are the same.

Proof of (2.6).The factorp(B2,-1 — B2,) has a zero aB,, = B2,-1 + wi: we see from
(2.12) that

vip(mi)
sinv

p(Ban—1— Pon) = (Bon — Bon—1 —7wi) + -, (B.11)
The integral may have a pole g4, = B2,_1+ mi because the contour, is pinched by
the pole ofp(a, — B2,—1) ata, = B2,—1+7i/2 and that ofp(«, — B2,) ata, = B2, — 7wi/2.
We will check if this is indeed a pole, and, if so, compute the residue.
Let us consider the four cases separately.

o Case(ey, 1, €2,) = (—, —). The pole ofp(a, — B2,-1) ata, = B2,_1+7i/2 is cancelled
by the zero of sinlv(82,-1 — o, + 7i/2). Therefore, there is no pinching in this case.
o Case(ez,_1, 820) = (+, +). If a # 2n—1, 2n, for the same reason, there is no pinching
of C,. Consider the integralg (i =1, 2, 3) corresponding to the following contours.
The integrallz has no pinching aB,, = B2,_1 + mi. Let us show that/; — I, and
I, — I3 are regular aB,, = B2,_1 + mi. After integration with respect tay, ..., a,_2,
the integral reads as

dO[,,,]_ dan
27i 27i

Ay, a) [ elea—8)

a=n—1n
j=2n-12n

sinhv(a, — B2,_1 + mi/2) sinhv(B2, — a,_1 + 7i/2)
sinhv (a1 — o, — i) ’

XY (oty—1 — @)
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Cy
Bon-1+ 5 Bon — &
X X
Crn1 I3
Cn Figure B1. The contours forly, /> and /3.

Here, A(a,_1, ;) is holomorphic and symmetric with respectdp_; and«,. Since
¥ (B) = —¥(—B), we can antisymmetrize the last factor and obtain

1 { sinhv(a, — B2,—1 + wi/2) sinhv(Ba, — a1 + 7i/2)

B n—1s Op; n—1s = A . .
(@1, @0’ P2a-1, Bn) 2 sinhv(a,_1 — a,, — i)

_Sinhl)(()ln_l — Bou_1+ 7T|/2) Sinhl)(ﬂzn — o, + 7'[|/2)
sinhv (e, — a1 — i) '

The integrall; — I, is equal to the integral over the contour.

Figure B2. The contour forl; — I>.

Taking the residue at, = B2, — 7i/2 (the minus sign in front of Res below comes
from the clockwise orientation of the integration contour), we get

Clor,, - _
/ St {—Res, —p,, —xij20(n — Bon) } Alan_1, Bo2n — i/2)

2mi

X(P(Oln,]_ - ﬁlefl)(/)(anfl - ﬂZn)(p(/BZn - ﬁ2nfl - 7“/2)

XY (ety—1 — Bon + i/ 2)B(oty—1, Pon — Ti/2; Bon—1, Pou) -
The integrand has no pole@t_1 = B2, —i/2 because) («,_1 — B2, +7i/2) vanishes.
The integral has no pole #, = B2,_1 + i becauseB(«,_1, B2, — 7i/2; B2,—1, B2n)
vanishes. Therefore, the integral is regulagat = 82,1 + 7i. By a similar argument
we can show thal, — I3 is regular at8,, = B2,_1 + i.

o Case(ey,_1, €2,) = (—, +). Taking into account the zero of the facte(Bz,_1 — B2.)

and the pole of the residueRes, —g,,—i/2, both atBy, = B2,—1 + mi, we have

Cn

{p(ﬁznl — B0ty — Bou-1) (RS, =g, mij20(@ts — )
Cpn—1
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x sinhv(a, — Bon_1 + i/2)
X 1_[ p(Bj — Ban—1)p (B — Ban)p(a, — B;) Sinhv (e, — B + mi/2)

1<j<2n—2
< [T e@—Ba-e@ — BV (e — )
1<a<n—1
XSinhV(,an—l—Ola + mi/2) sinhv(B2, — o, + x7i/2) _1
sinhv (o, — a,, — i) an=foy—i/2 o
Pon=F2p—1+7i
Using equations (2.10), (2.12), (2.13), (2.15) agd= 1, we obtain (2.17).
The casdey,_1, £2,) = (4, —) is similar.
Appendix C. One-time integration
In this appendix we show how to reduce thefold integral for G(81, ..., f2,) t0 an

(n —1)-fold integral (2.28). We shall follow the method suggested earlier to us by Smirnov.
A similar calculation has been published in Nakayashiki's paper [12] where the limiting
casev — 0 was discussed. Since our working is entirely similar to that in [12], we
shall only indicate the necessary steps, omitting further details. In what follows we set
B=(B1,...,B2), e =C(e1,...,€2,). We restrict tor = 2, so thatyr(8) = sinhg in the
general formula (2.18).

Step 1. Using

1—[ 2 Sini“(otr —a) = de'(ei(’lizl+l)ak)l<k i<n

r>s

we rewrite the main part o7 (8). as

JB). = / - f [ s [T (e — ) dete™2+9) _ — 0(alf) C.1)
k=l  kj

where

[,z sinhv(ax — B + 7i/2) T],.z sinhv(—ax + B; + 7i/2)
1., sinhv(a, — a, — i)

Qalp)e =

Step 2. In the first column of the determinant, substituté”e?* by the right-hand side
of the identity

in+192n—1
e—(n—l)ozk _ i"Te2 (

= ezfﬂf/z—zl.e—ﬁf Fo(ag) — F_(ag) + ch(lg)e—(n_zzﬂ)ak)

=2

Here
21 i R I i
Fi(x) = jl:!smh2<a - B+ 2) F_ (o) = (-1 gsmh2<a - B — 2)

andc;(B) denotes some function @’s. Terms containing;(8) vanish in the determinant.
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Step 3. Expand the determinant at the first column to obtain
in+122n71 n

JB)e= <7m—— Yy (D7,
e P2 > eh ; !

Jie= f : f [ [dou [ otew = B) (Fi(e) = F-(@)) Di(e) Q (| B).
k=1 k,j
where for brevity we seD;(«) = D(ay, ..., -1, 011, ..., ).

Step 4. Next we carry out the integral oves. For eachl, set
[T sinhv(a; — B; + 7i/2) [T-n sinhv(—a; + B; + 7i/2)

Qi(x|p)e = [T, (< Sinhv(e, — oy — 7i) [1,~p, Sinhv(ey — a, — 7i)

Consider the integrals

() ()
Kl,e = :E[ Hl,e dOll
Cy

2n
HY = Fea) [ oo — ) Qul@lp)e
=1

J

taken along the contous. = Zf.‘:l C.;, respectively, which are shown in figure C1. (To
fix the idea we draw the figure assuming thieare all real, but the necessary modification
in the general situation should be obvious.)

R+ C_s R+
o X as+mi (s >1) C o,
C_y
—R R
C+.]
Ciyg X ay— i (s <) Cyon
—R-% Cis R-% Figure C1. The contourC...

It can be verified that inside the contours the only poles of the integﬁ,ﬁfd are
o =y, Forifor s <1 ors > I, respectively. Collecting the residues we obtain

K7D+ KD =—2ni (Z M+ M}j)
s(<l) s(>1)
M = ReS,—qzxi Fx(o) [ [ oles — B)) Q@) doy .
J

One can show that, upon integration by the other variables and summing, ¢tivese terms
cancel with each other. More precisely, set

Hj(<l_) Sinhv(al — ,Bj + 7T|/2) l_[j(>l_) Sinhl)(—()tl + ,3]' + 7T|/2)
Hr(;z) sinhv(e, — oy — i) 1_[:@;1) sinhv(ey — o, — i) '

0, (@lp).=
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Then we have, for any pair < s,

f der, M Dy() Q) (@) + (—1) f dos M) D, (@) Q) (@] B): = 0.

This can be seen by changing the variagle—> «, + i.

Step 5. From the transformation properties @fg) it follows that

(€3 —_g®
Le loyy—oFmi/v— Hl,S
which implies that the integrals corresponding(e 3 give the same results as f6¥ 1.
As R — oo, the integrals alon@’. » 4 are calculated from the following asymptotics
of the integrand as; — +o0:

1
ol — B) ~ 2exp(¢ V- ﬂ,-))
2 2
Fy (o) l_[ ooy — ) ~1" eXp(:FV (”0!1 -3 Zﬁ,))
=1 =1
(_1)l+i+l
Oi(a|B)e ~ exp(xv(na + Ay)) x (£1)"

2n
with

A[ZZOtk—Zﬁj"f‘ﬂi(l_—Zl—i‘%).

kel J#
From the last two steps we find that

R ; I+i+1in
_ i (=1 | ~ z
/ (HD — ) doy = 7%(@/" _evi) 4R

where
B 2n
Ai=Ar+3) B
j=1

andR signifies a term which vanishes whé&— oco. Hence we arrive at the result (2.28)
stated in the beginning.

Appendix D. Derivation of the nearest-neighbour correlator

Here we derive the formula (4.3). We start from (4.2) and consider the specialization

G = G(,B+7T|,ﬂ+ﬂ|,ﬁ, IB)++77.

Proposition D.1.

(1 —cosmvcosh2a) da . (D.1)

1 1 /Oo ¢ ¢(a)

G+-=
2 2mv? J_ costfa ¢(a)
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Proof. First let (B1, ..., Ba) = (B + 7i, B+ i, B+ ¢, B+ ¢). Then (4.2) becomes
-1 et pri—e)
C 4m2l—et  p(mi)?

X/daeaw(a—ﬂ—ni)zw(a—ﬁ—8)2Sinh2v(ot—,3—8—7T2i>
: i 3ri
x|:smhv<a—,3—2)5|nhv<a—,3—8—2>

+Sinhv<ot - B - 712|> Sinhv<a —B—¢c— 712|>]

Sincea = B+e+mi/2 is not a pole, the contour can be takemd < Im(a — B) < 37/2.
Changing the variable — o+ 8-+¢+miand usingp (o +mi)p(a) = —i/ cosha sinhv(a +
i/2), we find

) 1 1 o pl@+¢e)? -1 . i . i
G=Ilm -— do €¢ sinh — sinh —
e>04mrv2 1l — et /;oo « ()2 cosHfa et 2 te et 2

+Si”h”<f¥ - %' +e) Sinhv(a - ”z'ﬂ .
) ¢ [ i : i
0= ﬁmda o a [sml‘?v(a + 2) +S|anv<a _ 2)]

and lettinge — 0, we obtain

1 9 o pla+¢e)? -1 . i . i
= — do € R hv — h —
G 271\1288(]_00 v o@? cosfa esinlv| o + 5 + ¢ ) sinhv| a + 5

GB+rmi,B+mi,B+e,B+e) i _

Noting

e=0
=hLh+D
where; is given by the right-hand side of (D.1) and
-1 [ & i
L=— do Resinh2(a+ — ).
27 4my /;oo costf ( 2)
Using
> e A
d = D.2
/,oo * cosha sinmA/2 (0-2)
we find
L=—;
thereby completing the proof of the lemma. O
Proposition D.2.
G=J1+Jr— %‘
1 [ sinh(1 + v)¢ 1 1 sinhvt
J1=— Im D.3
Y72 ), sinht (sinnv coshv(t + mi)  cosH ut) (03

2 = - n  —
7 sinTv sinht coshv(t + mi)  coshvr

_ 1 / dr sinh(1 + v)t <Re 1 COSnv) .
0
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Proof. Substituting the integral formula for lag«) into I; above, we obtain

1 - sinh(1 t [ e 2vt
G+3= — f dr sinhd +v)r. / do sin <va) (cosh 2« cosmv — 1).
TV Jo

sinhtsinh2vt J_o ~ cosFa T
By integrating overx using (D.2), the right-hand side becomes
1 [ sinhl1+v) t—mi t + i 2t
— dt ———————— [cosmv . — | - .
72 Jo sinhz sinh 2¢ coshv(r — i)  coshv(t + i) coshvt
After a little algebra we obtain (D.3). O

Proposition D.3.We have

1 B . o sinh(1—v)t
G-i=n+h-1= - —|[sin dr———— ). D.4
2=t w2sinmv dv ( m)/o sinht COShvt) (D-4)

Proof. Consider the integral

/ sinh(A+v)(r — 7i) t — 7i
dr s . =
c sinh(t — mi) coshvt

where the contouc€ is as shown in figure D1.

; C
—R+mi R+ mi

-R —€ € R Figure D1. The contourC and the semicircle,.

Taking the imaginary part, we obtain

R .
/ tdt 5|nh(.1+ V)t Im 1 .
_R sinhz coshv(t + i)

. R . . .
:Im(/ +/ +/)dt(SInf'l(.:l.—l—U)(t.—nl)t—nI)
_R C. B sinh(t — i) coshvt
+/”dt R <smh(l+v)(R+t|—m) R+t —mi
0

Sinb(R + i — mi) coshv (R + ti)
sinh(1+ v)(—R +ti —wi) —R+ti —mi )

sinh(—R + ti — i) coshv(—R +ti)

As ¢ — 0, the integral over the semicircl€, gives 72sinzv, and asR — oo, the last
term behaves like

47 R cosmv — 2n?sinry + O(R™Y).

Since
m (sinr‘(l +v)( — i) t — i ) _ _tcosf(l 4+ v)tsinmv o sinh(1 + v)t cosmv
sinh(r — i) coshvr sinht coshvr sinht coshvt
and
sinh(1 4+ v)tsinhvt  cosh1 + v)t coshr

sinht cosHf vz sinhrcosifvr ~ sinhz coshvt
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we have
R sinh(1 t { sinhvt 1 1
/ t dr h( +v) Y - Im .
R sinhz cosfvsr  sintv  coshv(r + i)
R coshr R sinh(1 t
- _/ tdt%—ncotnv/ sinhd + vz
_g  sinht costf vz _g sinhz coshvt
+4n Rcotry — 72+ O(R™Y).
Noting that
. R sinh(1 t ® ginh(1 = v)t
lim 471RCOt7rv—rrCOtnvf dtM =2 cotnu/ dtM
R—>o0 _r  Sinht coshvt 0 sinhz coshvt
we have
1 1 [ coshr cot © sinh(1 — v)t
11=—7——/ rdr — + m}/ dt.h(iv).
2 =2 ) sinhz cosif vt T Jo sinhs coshvr

By a similar calculation, starting from

/ sinhA+v)(t —mi) 1
dr s e =
c sinh(t — 7i) coshvt

we obtainJ, = g Collecting these terms, we obtain (D.4). O

Appendix E. Integrals related to the casev = %

Here we supply proofs to the formulae presented in section 5. We retain the notation used
there.
First let us evaluate the integralg (5.2) andJ,; (E.5). SetB; = €%, and define

1
B Hif:; (Bj — Bi) [T (Bj + Bx)
— (="
T 8+ B T (8 )

Proposition E.1.For 1< k <n andr <i < s we have

Fj;

(E.1)

Ji

i.H—l—i

s 1/2 i s
li=—_—B" (]"[ B,,») (Z(—Bj)"—lﬂ,ﬂ,- + > BB+ ni)Gﬁ) (E.2)
j=r j=r j=i

s 1/2 i
Jii = 2i-Y‘iBil/2<H Bj> > (=B E (E.3)
j=r

Jj=r

S

s 1/2
— 2 Bi1/2<1'[ Bj) 3 BIGy,. (E4)
j=r

j=i

Proof. Changing the integration variable th= ¢ we have

i2r75+17i 12 S /2 roo
Ik,' = 77[ Bi (1_[ Bj) /(; Wi

j=r
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where we have set

AF1dA
[T, (A+ B)TTj_i(A = B +10)
To see (E.2) it suffices to show that

/0 oy = (—1>"+1(Z(—B,)"‘1ﬁ,ﬂ,- +Y BN+ ni)G,-,-> :
j=r j=i

This follows from integration ofvy; log(—A) along the contour shown in figure E1.

Wi =

Figure E1. The contour for the residue calculus.

The formula (E.4) is a direct consequence of (E.2). Counting the sum of the residues
of wy; we find

0= Xl:(—Bj)kleﬁ + Z B G
J=r J=t
This shows the equality of (E.3) and (E.4). O
Define
Ji = Li + (=D Iy (E.5)
and denote by; and J; the column vectors
="l L) Ji="ais s i) -

Proposition E.2.

Bi — Bk

1= 1_[ 2icosh 5

r<j<k<s

det(J,, Jos1, ..., Jy). (E.6)

Proof. To see this, we write down the known equality

I=(0)= Y (EQ) - ES) B B (E.7)
For convenience let us introduce the symhbls), /i (£) by settingl; (+) = I;, I;(+) = I;
and I;(—), I;(—) = the empty symbol. Then (E.7) can be written as

Bi — Bk
2

1= 1_[ 2icosh

r<j<k<s

Z det(lr(_gr)a e Is(_gs)v I_‘v(gs)’ R I_r(gr)) .
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Taking the sum ovesy, &;_1, ... successively and keeping track of the signs, we find that
the last sum becomes a single determinan¢flet. ., J;). O

Proposition E.3.If r < m, I < s then

WYm) = D71 det(Jy, ..o, Jiety Doy Jists oo J5) (E.8)
whereD = det(J,, J,41, ..., Jy).

Proof. This can be verified in a similar way as in the proof of proposition E.2. As an
example, letustake=1,s =4, m=1,1=3:
(V1y3) = (07 0505 1)
_ Z E(l) (e2 E(Z) E(3>E<4) )

8262 - E4E4
£2,84

Using equations (5.1) and (E.6), in the same notation as in proposition E.2, we have
D(yrys) = Y eadel(ly(+), Io(—£2), Ia(—), Ia(—ea)Ia(ea), I3(—), Ta(e2), a(+)) .

£2,84
The sum ovee, gives J4, Summing further oveg, we obtain
det(ls, Ja, Iz, ) — dets, Iz, Ja, I1) = detUs, —Jz, Ja, I1
= det(Jy, J2, I1, Ja)

where we used, = Ir + I and J, = I1 — I;.
In general, consider the case< /. We have

DY) Z Emst - €1_1detl (e)

wherel (¢) denotes the matrix conS|st|ng of the following array of column vectors:
Ir(_gr)’ B ]m—l(_gm—l)v Im (+)7 Im+1(_8m+1)v ey Il—l(_el—l)
Li(=), pa(—&111), - .o, I(=&y), L(&), ..., Dipa(erq)
1[(—), 1171(8171)7 ey 1m+l(8m+l)a Im(+)a [mfl(gmfl)» EIE) Ir(gr) .
Summing overy, g_1, ... we see that the sum combines into a single determinant

det(‘lrv ey Jm—19 IW!’ _Jm-‘rlv ) _Jl—lv Jl-‘rlv K] ‘]Sv I_m)
= de‘(.],, sy Jm—l» (_1)S7m[_m’ Jm-&-l’ ey J[—l» Ima Jl+ls ey JY) .
This shows (E.8). The other cases are similar. O

Arguing in a similar manner, one can show in general the following.

Proposition E.4.Supposem; < -+ < my, 1 < --- < I, and letr < min(ng, [1),
max(my, I;) < s. Then

(Wml e kawlt T 1/’;;) = D_l det("rs sy Jllflv [mlv J]1+17 ) Jlkfl» Imkv Jlk+17 ) Js)
where D = det(J;, J;41, ..., Jy). In the right-hand sidd,,; is placed at thé;th slot.
We omit the details.

Proof of proposition 5.2Consider the matriX = (J,, J,41, ..., J;), and setk,, = X711I,,.
Then proposition E.4 states that

(g =V Wy - Yp) =deller, .o, Ky ooy Ky o €0)
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where thee; = (§;)1<i<» denote the unit vectors. It is clear that the right-hand side is
det((Km, )i, )1<).i<k -
and that(y,,¥;) = (K,,);. The proposition follows from this observation. O

Proof of proposition 5.3. The formula (5.5) is already known. Let us show (5.4) by taking
r=m ands =1 in (E.8). We wish to compute

de'(Jma Jm+1’ ey Jl—la Im - %Jm) .

Substituting
. i 1/2 !
JA— B,}/2<1‘[ ) ((—Bm)k—lﬁmme+ZB}“1ﬁfG,fm)
—m j=m
in 172 1
— 731/2 Bk 1 m G'm
" b (1‘[ ) 387 - G

J=m

and using (E.3), we have the following expression oy, y):

in ] n/2 1

|

nBi/Z<| |Bj> > (B — Bu)Gim dEtX; Y Z.
Jj=m

j=m

HereX;, Y, Z are the following matrices:

1 1 1
-B, ... =B B;
Xj = . . .
(—=Bw)"* ... (=Bp"' B
Fomw ... Fni-1 O
y — 0o . : 0
0 Fl—ll—l 0
o ... 0 1

Z = diag(2i' " BY?, ..., 2iB}'3, 1).

The matrixY is upper triangular with diagonal entrigg, (m < k </ —1) and 1. ltis
therefore straightforward to compute the determinant. Inserting the expressiafis &d
Gj; in (E.1) we obtain the formula (5.4).

The case ofyy;) can be shown similarly, using (E.4). O

Appendix F. Inhomogeneous Ising model

In this section, we compute the correlation functions of the inhomogeneous Ising model
at the critical temperature. We give an explicit formula for the vacuum expectation values
(vadyy,|vac wherey”, ¢, (n € Z) are the free fermions diagonalizing the transfer
matrix T (u) of the critical Ising model. The general correlation functions are given by the
Pfaffians of these matrix elements. In [21] the correlation functions for the critical Ising
model were given. We have not checked the equivalence of our result to theirs except for
some simple cases.
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F.1. Completely inhomogeneous Hamiltonian

Consider the transfer matrix of a completely inhomogeneous six-vertex model in the infinite

volume:
8n+1 811 8n71 U

T(u){g'/‘i — ‘ ‘ ‘

- Voo

Entl En Ep—1 "
=S TR B +w.
{m} n

The horizontal line carries the spectral parameter O and the vertical lines carry the spectral

parameterg, +u. We assume that, = 0 if |n| > 0. The Boltzmann weight®;:2(8) are

given by (2.3) withv = % This is the choice in which the six-vertex model is equivalent
to the critical Ising model (see e.g. [3]).

Let S be the shift operator
(&)
S{s,,} = 1_[5&,+18,’, :
n
Then we have

ST =Y [ Rai B +w)

{ra} n

= Ién-&-ln(ﬂn+l + u)knn—l(ﬂn + M) et (Fl)
where
1 -
50y c(B) b(B)
RO=1" b ap
1

and

s 1-¢? s X —y

b(ﬂ)—m C(,B)—il_i_gz {=¢€ .

The matrixR(8) can be put in the form
R =€X X=0"®0c +o0 Q0"
whereo® = (6* +i0?)/2 andy = y(B) is related tog by

1+isinhp/2 2¢ i(1-1¢?
T coshg/2 1+¢2 ' 1+¢2
o B2 _ 1—isinhy _
coshy

—V

As —ip increases from 0 tor, y increases monotonically from 0 teo. We write
Yo = v (B,), C, = coshy, and S, = sinhy,. In what follows, we assume that, < 1.
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F.2. Jordan—Wigner transformation

As usual, we define the Jordan—Wigner transformation

+ z -
W’T:O'n Ham w”ZGiz 1_[6;1

m<n m<n

Note that the operatorg* and v, satisfy the canonical anti-commutation relation
[w:w w::]Jr = [’ﬁm, Wn]+ =0 W,Tw ‘Wn]Jr = 8m,n . (F2)

Form, n € Z such thatn > n, we set
Hyy = Yt + (=" ",y
Note that
Xun-1=Hppn1 [Hyn-1, Hun] = Hyn [Hin-1, Hun-1] = Hyn . (F.3)
We have

Proposition F.1.
TO T =1+ IE”H + 0w (F.4)

where
H=> (=1""CuSn-1-"Su1CnHpn .

m>n

Proof. Let us use= to mean an equality module’. Using (F.1), we have
T(O)_lT(L{) -1= Z e I\énflan(ﬁnfl)_l(iénnfl(ﬁn)_liénnfl(ﬁn + M) - 1)

n

Xlén—ln—Z(.Bn—l) e

—lu v
= 7 Z ---Ad Rn71n72(13n71)_1Can n—1-

Since Ryr_1(B) L = e i1 the proposition follows from (F.3). O

If we fix B,’s, the transfer matrice® (u) commute with each other for different values
of u. ThereforeH also commutes witll" («), and they can be diagonalized simultaneously.
F.3. Diagonalization

In order to diagonalize the Hamiltonia we set
@) =Y C, e [T @a+se™ []a-s e,

.jénfl . j=n+1 ‘ (F.5)
p*O)=> Ce J] a-5¢) [] a+se)y,.
n j<n-1 jEn+l
Then we have
Proposition F.2.
[H.¢@)] = —(€ + &) (6) (F.6)
[H. ¢*(0)] = (€ + e )¢*(6) (F.7)

[¢°(61), p 0]y = [ [(1+ ;&™) (1 — 5;€%) ) . (F.8)
j k
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Proof. Setz = €, and write

$O) = xu¥
nez
x=Cz" [ @+8zH [] A-$2
j<n—1 j=>n+1

and

[H, wn] = - Z 1ﬁmAmn

m

CrnSm-1-++S411Cp if m>n
Am=140 if m=n (F.9)
(=)™ 1C, 8,1+ Sps1Cm if m<n.
We are to prove
Z ApnXn = (2 +2 D . (F.10)

nez

Suppose thag, = 0, i.e.C, =1 andS, = 0, exceptforM <n < N. lf m > N+ 2 or
m < M — 2, then (F.10) is valid because

{1 if n=m=+1
Amn=

0 otherwise
and
[ @+sz7hH  if n=N+1
M<j<N
Xp =
&[] @a-s0 it n<M-1.
M<GEN

Therefore, (F.10) is written in the form

ANM) L (VM) _ (F.11)
where AN-M) = (A(N.M) and x(V:M) = (x{N.M) . The matrix
. N+1>m,n>M-1 n N+1>n>M-1

AWNM) s of the form: " !

_Zil CN

Cy —z—z71

_SNCN—l CNCN—l
SnSn-1Cn-2 —CnSy-1Cn—2
AWM ) )
Z(N—l,M)

DV MSySy_1-+ - SuzaCu (DN MACySy 1+ Sus1Cu
(DN MG Sy_1 - SyaaSu (=DM CySy_1 - SyaSu

SvSv-1-Suy1Cyu SnSn-1-+ Sus1Su
CnSn-1-+-Su+1Cy  CnSn-1--- Sus1Su

AN MD
Cus28u+1Cy Cri28Sms1Su
CM+1CM CM+1SM
—z—z71 Cu

CM —Z
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Here

—(N-1.M) (N-1,M) (N,M+1) __ (N.M+1)
A (A )N—l}m.n}M—l A - (Amn )N+l2m,n2M+l :
Similarly, the vectorx™-# s of the form

A+ Syz™H - A+ Syz HzV+
LN A+ Syuz™H - A+ Sy_1z7HCyzV
xNVEM(1— Syz)
WML 4 Syzh
= ) (F.12)

Cu(L— Syt1z) -~ (L= Syz)z™
(L—Syz)(L— Syy12) - (1 — Syz)zM1

Here

—(N-1,M) _ (N=1,M) (N.M+D) _ P M+1)
X =\x, X X, .
N-=1>n>M-1 - N+1>n>M+1

We prove (F.11) by induction oV — M. If N = M, we can check directly that
—z71 Cy Sy (L4 Syz7hHzN+t
( Cy —z—2z1 CN>< CNZN =0.
—Sn Cy (11— Syz)zV "t
If N > M, noting that
=Sy L+ Syz "+ Oy Oy = @ = Sy
we can reduce the equalit(/AW*M)xWM))n =0forN—-1>n > M-—-1r1to
(AN=LIDx(N=LMD) “— 0. Similarly, noting that
Cu Cuz™ + Su (1= Syu2)z" ™ = A+ Suz™Hz"

we can reduce the equalityA™-"xV-M) = 0 for N+1 >n > M+ 1to
(ANMHEDyNMHD) "= 0. The proof of (F.7) is similar.
Let us prove (F 8). We have

[¢*(60), ¢<92)]+—ZC,§z§z;k H 1+ Sz (L - Sjz1) H 1= Sz + Sz

j=—00 j=k+1
wherez; = €% (j = 1,2). We assume thaf, = 1 andS, = 0 except forM < n < N.
Then we have

1+ Sz;H@-S;
[¢*(91), ¢(92)]+_Z§+1Z;N 11_[ M( + 52, )( le)

-1
1— 2024

k-1 N
+ Z e @+ ) [T+ S22HA - Sz [ A= Siza@+ Sizph
j=M Jj=k+1

r— Y= 821+ Siz0h
; _

- (F.13)

1-z;tz
Write the RHS as

N
(Z z’gz;k) [T@+ Sz HA =Sz + FY™ Sy, ..., Syi 2. 22).
j=M

keZ
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Then, F¥-M(Sy, ..., Sy; z1, 22) belongs toC[Sy, ..., Sy 21, 21 5 22, 25 1.

We wish to showF®-" =0, Let GY¥M(Sy, ..., Sy; z1, 22) be the RHS of (F.13).
Note that FV" = GN-M in C(z1, z2)[Su, ..., Sy]. Therefore, it is enough to show
GWVM =0 as an element of(z1, 22)[Su, ..., Sy]. Note that

GNM(Sy . Syiz122) = GNM (=S, . =Syizpt 2 Y

+MZIN—MG(N.M)(SN,

N .
=2 s Sm 22, 21) -

It is also easy to show that
GV (Sy, ..., Sni 71, 22) = GV M (S, a1y, -5 Sovy; 21, 22)

for any permutationr of {M, ..., N}. Now GV (Sy, ..., Sy;z1, z2) is a polynomial of
degree 2 inS),. Therefore, in order to show th&™-*) = 0, it is enough to show

GV M (z4, Syi, -, Sn; 21, 22) = 0.

This is shown by induction: we have

N.M -1 —(N,M+1)
GVM™ (21, Syias -y Sns 21, 22) = (2227 + 2221)G (Sm+1s -+, Sns 21, 22)
where

N
—(N,M+1) -1 — _
G (Smats - Sviz1.22) = =25 12y M Y (A4 825 DA - Sjza)
N j=M+1
+A—zzh) Y A+ 8D
k—1 k=M+1 N
< [] @+8zHA -8z [[ A= Sz + Sz0H
j=M+1 Jj=k+1
N
+ ) A-S8zd+ Sz Y.
j=M+1
Then we can show that

— (N, M+1) _ _
G (SM41s - -+ SN3 21, 22) = 2227 “(L+ Sy125 (L — Spr4121)

—(N,M+2)
xG (Sm+2, .-, SN 21, 22) -

Becauseﬁ(N'N)(SN; 71, 22) = 0, we haveﬁ(N’MH)(SMH, ..., Sn: 21, z2) = 0 by induction.

F.4. Correlation functions
The vacuum vectojvac) satisfies

$(0)|vag =0 if —7/2<60< /2

. (F.14)
¢*(@)|lvac =0 if w/2<6<3r/2.
Similarly, the dual vacuunivad satisfies
ad¢((®) =0 if 2<6<3rn/2
(vade(0) it/ 7/ (F.15)

(vade* () =0 if —7/2<6< /2.

We also havgvadvac) = 1. Our goal is to compute two point functiofgady’ v, |vac.
For this purpose we need
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Proposition F.3.

2

do . N
Yn = ¢O)An0) 5 v, =/ " (O)A,(0) .
0 T 0 2

Here A, () and A% (6) are given by

A, (0) = e { ! + ! 1}
" Cul 1/ oA+ 8§ e[, (1 — 5569 [1+ 8,67 " 1-5, ¢
. gnl 1 1
AXO) = 1 . = _ — T+ 5 1.
Cnl_[jz—oo(l_sj e"))]_[j:n+l(1+ Sj e*'9) 1+Sne 1- Snel

Proof. From equation (F.5) we have

2 do 7 G+ e
[Tooner e =y [ L=mC e
A or T & CoTTa(1— 5;€%)

1 1 g
: — e
X{1+Sne'9+1—Sne'9 } 21

+ Y v /2” Ce [Tjpsa(1— ;€
k .
k<n—1 0 Cn 1_[7;1(1 + Sj e_le)

1 1 o
i — efl(nfk)(')i .
X{1+S,1e—'9+1—5,1e<9 } 21

Noting thatfoz” €"dg/2n = 8,0, we can show this is equal tg,. The other case is
similar.
The two point functions are given as follows. We have obviously

(vady,, ¥, lvag = (vagy, v |vag = 0.
Proposition F.4.Suppose that: < n. We have
(vady ¥, lvag = (=" " Hvady; ¢, |vag
= (=D""(vady, ¥, Ivac = —(vady, ,,|vag

jm—n—1 1 l_[ <IL *l(Bl +B)

= B,.B,)Y? Almyagi<n / . F.16

- (B By) jzim: ’Bf nm(g@ (Bj — B)) ( )
#J

Here, we set3; = €%. In addition, we have

(vady iy, |vag = (vady,ylvag = 3.

Proof. Because of (F.2), it is enough to compyt@dy: v, |vac (m,n € Z). Consider the
anti-involution

Yn < ¥, Bn < —Bu Yn < —Va (vad < |vag $(0) < ¢*(=0).

Note that the last expression in (F.16) changes sig-bl)”—"~1. Therefore, it is enough
to prove the equality fofvady, ¥, |vac.
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First, consider the case = n. Using equations (F.14) and (F.15) and proposition F.3,
we have

37/2 —i0 N 0 2
(VA vad = A+S,e'"HA-S5,€% { 1 1 B 1} do

/2 C? 1+ S,e Tz S, & 2n
/2 og LT 5 el o) @

/7,/2 de( 971 5,60 )zm

_ 1

5

In general, form < n, we have

3n/2 lo1-sé . do
va . |va Con s L _glmmO
(vady, ynlvag = / 1+ S,e .1;[+11+Sje*'91+ S, e ? 27

With the change of variable = —€?, the right-hand side becomes

_/. CunCa [T/ a1+ 8j2) dz 1y CnC, fdzl 2+ i@+ Si2)
S a2 +S) 27 (2i)2 9 i | I EAY))

Here the branch of lag +i)/(z — i) is such that it has the value 0 at= co. The contour
C is as in figure F1.

Figure F1. The contourC.

Taking the residues at = S; (m < j < n) and using (F.5) and, in particular, the
equality

Si+i - i = ;+1(B‘+Bl)

— _B _ =0
S; —i pj— r[m<,<,,(3 - B)

log

we have (F.16).
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